Syllabus

Titel
5595 Mathematical Methods 1 - Mathematics Essentials
LV-Leiter/innen
Dr. Andrea Wagner
Kontakt
  • LV-Typ
    PI
  • Semesterstunden
    2
  • Unterrichtssprache
    Englisch
Anmeldung
12.02.2019 bis 28.02.2019
Anmeldung über LPIS
Hinweise zur LV
Planpunkt(e) Bachelor
Termine
Wochentag Datum Uhrzeit Raum
Mittwoch 06.03.2019 09:30 - 12:00 TC.3.08
Montag 11.03.2019 14:00 - 16:30 TC.5.02
Mittwoch 13.03.2019 09:30 - 12:00 TC.3.08
Montag 25.03.2019 13:30 - 16:00 TC.4.13
Mittwoch 27.03.2019 09:30 - 12:00 TC.3.08
Montag 01.04.2019 14:00 - 16:30 TC.3.11
Mittwoch 03.04.2019 12:00 - 14:30 D2.0.392
Montag 08.04.2019 14:00 - 16:30 TC.3.07
Donnerstag 11.04.2019 09:30 - 12:00 TC.3.06

Inhalte der LV

The course covers the following topics:
  • Basic mathematical vocabulary: Definition, Theorem, Proof,...
  • Sums and Products
  • Sets
  • Logic
  • Techniques of proof
  • Functions
  • sup, inf, max, min
  • Sequences (convergence)

Lernergebnisse (Learning Outcomes)

After completing this class the student will have the ability to:

  • Understand and use fundamental mathematical vocabulary.
  • Recognize and describe different proof techniques and apply them to simple problems.
  • Define and explain several mathematical concepts (e.g. function, sequences, convergence etc.) and give examples.
  • Analyse and structure (mathematical) problems.
  • Read and comprehend simple mathematical texts.
  • Present and communicate mathematical problems and their solutions.

Apart from that, the class will contribute to the ability to:

  • Participate in group discussions/team work.

Regelung zur Anwesenheit

≥ 75 % Attendance

Lehr-/Lerndesign

The purpose of the class is to give an introduction to basic mathematical concepts and methods as a preparation for the mathematics lectures of the Master in Quantitative Finance curriculum.

The class is mainly taught as a combination of lectures and exercises with homework assignments. Students present their solutions which will be discussed in the group.

Leistung(en) für eine Beurteilung

  • intermediate test (45 %)
  • final test (45 %)
  • homework assignments + presentation of solutions in class + mini tests (10 %)

Detailed information will be provided in the first unit of the course.

 

 

Literatur

1 Autor/in: Kevin Houston
Titel: How to think like a mathematician

Verlag: Cambridge University Press
Jahr: 2009
Art: Buch
2 Autor/in: Kevin Houston
Titel:

Wie man mathematisch denkt


Verlag: Springer Spektrum
Jahr: 2011
Art: Buch
3 Autor/in: Daniel Velleman
Titel: How to prove it

Verlag: Cambridge University Press
Jahr: 1998
Art: Buch
4 Autor/in: Hermann Schichl, Roland Steinbauer
Titel: Einführung in das mathematische Arbeiten

Verlag: Springer
Jahr: 2009
Art: Buch
5 Autor/in: Frank Riedel, Philipp Wichardt
Titel: Mathematik für Ökonomen

Verlag: Springer
Jahr: 2009
Art: Buch
6 Autor/in: Knut Sydsæter, Peter Hammond
Titel: Essential Mathematics for Economic Analysis

Verlag: Prentice Hall
Jahr: 2008
Art: Buch
7 Autor/in: Knut Sydsæter, Peter Hammond, Atle Seierstad, Arne Strøm
Titel: Further Mathematics for Economic Analysis

Verlag: Prentice Hall
Jahr: 2008
Art: Buch

Erreichbarkeit des/der Vortragenden

andrea.wagner@wu.ac.at

Sonstiges

Course Readings:The material will be made available at Learn@WU.
Zuletzt bearbeitet: 15.03.2019



Zurück