This course covers empirical methods in industrial organization and firm behavior at the PhD level. We start with an overview of recent advances in estimation techniques for production functions and how these tools can be applied to estimate markups and product quality from production data. Further topics include empirical models of innovation, investment and firm performance. Applications of these tools in the context of mergers and acquisitions, multinational firms and industrial policy will be discussed. Students are asked to solve problem sets and to complete a take home assignment. The problem sets will include the analysis of actual data sets and replications of previous empirical studies. Students should make sure to have access to the relevant computer programs such as Stata or similar software. The take home assignment will be based on the readings.
Syllabus
Titel
6154 Topics in Empirical Industrial Organization
LV-Leiter/innen
Prof. Dr. Joel Stiebale
Kontakt
-
LV-Typ
FS -
Semesterstunden
2 -
Unterrichtssprache
Englisch
Anmeldung
11.02.2019 bis 24.02.2019
Anmeldung über LPIS
Hinweise zur LV
Planpunkt(e) Doktorat/PhD
Auf dieser Seite:
- Kontakt
- Inhalte der LV
- Lernergebnisse (Learning Outcomes)
- Regelung zur Anwesenheit
- Lehr-/Lerndesign
- Leistung(en) für eine Beurteilung
- Teilnahmevoraussetzung(en) und Vergabe von Wartelistenplätzen
- Empfohlene inhaltliche Vorkenntnisse
- Erreichbarkeit des/der Vortragenden
- Detailinformationen zu einzelnen Lehrveranstaltungseinheiten
The course is designed to enable doctoral students to understand and critically evaluate the empirical literature on various topics in empirical industrial organization (IO) and related fields. It also prepares students to conduct their own empirical analyses using firm-level data.
Regarding attendance, consult the Professor
Lectures and tutorials
Class participation, problem sets and take home assignment
PhD Students of Economics
Microeconomics, Microeconometrics
Knowledge of microeconomics and microeconometric methods including panel data, instrumental variable estimation, discrete choice and treatment effects
Email: stiebale@dice.hhu.de
Zuletzt bearbeitet: 04.06.2019
Zurück