Syllabus

Titel
6154 Topics in Empirical Industrial Organization
LV-Leiter/innen
Prof. Dr. Joel Stiebale
Kontakt
  • LV-Typ
    FS
  • Semesterstunden
    2
  • Unterrichtssprache
    Englisch
Anmeldung
11.02.2019 bis 24.02.2019
Anmeldung über LPIS
Hinweise zur LV
Planpunkt(e) Doktorat/PhD
Termine
Wochentag Datum Uhrzeit Raum
Montag 25.03.2019 10:00 - 15:00 D4.1.001
Dienstag 26.03.2019 10:00 - 15:00 D4.1.001
Mittwoch 27.03.2019 10:00 - 15:00 D4.1.001
Donnerstag 28.03.2019 10:00 - 15:00 D4.1.001
Freitag 29.03.2019 10:00 - 15:00 D4.1.001
Mittwoch 12.06.2019 10:00 - 14:00 D4.1.001

Inhalte der LV

This course covers empirical methods in industrial organization and firm behavior at the PhD level. We start with an overview of recent advances in estimation techniques for production functions and how these tools can be applied to estimate markups and product quality from production data. Further topics include empirical models of innovation, investment and firm performance. Applications of these tools in the context of mergers and acquisitions, multinational firms and industrial policy will be discussed. Students are asked to solve problem sets and to complete a take home assignment. The problem sets will include the analysis of actual data sets and replications of previous empirical studies. Students should make sure to have access to the relevant computer programs such as Stata or similar software. The take home assignment will be based on the readings.

Lernergebnisse (Learning Outcomes)

The course is designed to enable doctoral students to understand and critically evaluate the empirical literature on various topics in empirical industrial organization (IO) and related fields. It also prepares students to conduct their own empirical analyses using firm-level data.

Regelung zur Anwesenheit

Regarding attendance, consult the Professor

Lehr-/Lerndesign

Lectures and tutorials

Leistung(en) für eine Beurteilung

Class participation, problem sets and take home assignment

Teilnahmevoraussetzung(en) und Vergabe von Wartelistenplätzen

PhD Students of Economics

Microeconomics, Microeconometrics

Empfohlene inhaltliche Vorkenntnisse

Knowledge of microeconomics and microeconometric methods including panel data, instrumental variable estimation, discrete choice and treatment effects

Erreichbarkeit des/der Vortragenden

Detailinformationen zu einzelnen Lehrveranstaltungseinheiten

Einheit Datum Inhalte
1 25.3.2019

Estimation of production functions

2 26.3.2019

Productivity, markups and multi-product firms

3 27.3.2019

Investment, R&D and Innovation

4 28.3.2019

Empirical studies of mergers & acquisitions

5 29.3.2019

Multinational firms and foreign direct investment

Zuletzt bearbeitet: 04.06.2019



Zurück