Syllabus

Titel
1683 Data Science Lab
LV-Leiter/innen
Mag. Elmar Kiesling, Ph.D., o.Univ.Prof. Dr. Alfred Taudes
Kontakt
  • LV-Typ
    FS
  • Semesterstunden
    2
  • Unterrichtssprache
    Englisch
Anmeldung
05.09.2019 bis 18.09.2019
Anmeldung über LPIS
Hinweise zur LV
Planpunkt(e) Bachelor
Termine
Wochentag Datum Uhrzeit Raum
Montag 07.10.2019 09:00 - 12:00 EA.6.026
Dienstag 19.11.2019 09:00 - 16:00 TC.4.01
Montag 20.01.2020 09:00 - 18:00 TC.1.02

Inhalte der LV

The final course of the SBWL Data Science will be conducted in group projects that are introduced in a joint kickoff-workshop together with"Data Coaches" (members of one of the involved institutes and from industry partners). Thereafter, the project teams are formed and each team will have to elaborated, together with their data coach, a concrete project plan for a Data Science project to be conducted over the duration of the semester, involving regular interactions with the data coach and the teachers of the course. It id the objective of this course to develop a front-to-end solution proposal to a practical problem in a team. The data coaches will provide data sets and tools from realworld use cases (from industry or from open data). The coordination will be done in 2 parallel courses, each of which takes over supervision of half of the teams. Each team will consist of 3-4 students.

Lernergebnisse (Learning Outcomes)

You will learn the following in this course:

  • apply the theoretical knowledge of courses 1-3 of the SBWL in practice
  • work in teams
  • understanding and diving into a concrete problem domain
  • manageing and self-learning new tools used in a practical context
  • working out a project plan and conducting a data science project
  • interaction with a "customer", the data coach, with a realworld analytics problem
  • applying ste-of-the-art data science methods from the scientific literature to realworld data problems

Regelung zur Anwesenheit

Attendance of the plenary  introduction session, the intermediate meetings (for individual groups) and the final plenary presentations (all students are expected to be present and give feedback to all the others' presentations) is required.

 

Lehr-/Lerndesign

  • Team building
  • Writing a project plan in interaction with the course supervisors and the data coach
  • Regular interaction of the team is expected and should be documented, team roles should be defined in the project plan
  • presentation of the intermediate results and project progress to the supervisors in an intermediate meeting, along with a draft project report
  • presentation of project results in front of the plenary in the end
  • Writing a project end report that documents the outcomes and allows others to understand your approach and re-implement/re-evaluate your results, the project report shall consist of a practical and a theoretical part, where the approach and solution is described in a reproducible manner, but also scientific methods and approaches and the litereature which explains them is surveyed.

Leistung(en) für eine Beurteilung

We will assess the following partial contribtions for grading the course:
 - Projekt proposal (10%)
 - Intermediate consultation: assessment of intermediate results and progress, steering (20%)
 - Final presentation (30%)
 - Final Report (40%)
for each result we will assess the group result and the individual contribution of the team members, i.e., it is ok if not all team members do presentations, but then it should be made clear from the project plan and report how the work was split and who contributed what.

We emphasize that this course as the final and most challenging course of the SBWL shall both teach you to apply what you leanrt so far, but also will require self-driven, motivated work and probably the acquisituion of even new skills to achieve excellent results. As we work with real companies, we will do our best to support you but we also expect the teams' ambition to produce and explore creative and innovative solutions by doing their own research, which we can only guide as instructors. Particularly, we hint again that, with a value of 4 ECTS the course amounts to at least 100hrs of work invested per team member into the project which should be justifiably presented and planned in the team's project plan.

Teilnahmevoraussetzung(en) und Vergabe von Wartelistenplätzen

Successful conclusion of the course 1 of SBWL Data Science.

Please be aware that for all courses in this SBWL registration is only possibly for students who successfully have completed the entry course (Einstieg in die SBWL: Data Science).

Note that for courses within the SBWL "Data Science" we can only accept students enrolled in one of WU's bachelor programmes who qualify for starting an SBWL; particularly, we cannot accept students from other courses and programmes enrolled at WU as 'Mitbeleger' only.

Empfohlene inhaltliche Vorkenntnisse

You should have completed courses 1-3 of the SBWL before this course.

Zuletzt bearbeitet: 29.04.2019



Zurück