Syllabus
Registration via LPIS
Research Seminar in Main Subject II - Accounting
Research Seminar in Main Subject III - Accounting
Research Seminar in Main Subject IV - Accounting
Dissertation-relevant theories - Accounting
Research Seminar - Accounting
Research Seminar - Accounting
Methodology and Theory
Research Seminar - Participating in scientific discourse I
Research Seminar - Participating in scientific discourse II
Day | Date | Time | Room |
---|---|---|---|
Monday | 12/02/19 | 03:00 PM - 05:30 PM | D3.0.222 |
Friday | 12/06/19 | 02:00 PM - 04:30 PM | D3.3.274 |
Monday | 12/09/19 | 03:00 PM - 05:30 PM | TC.-1.61 |
Wednesday | 12/11/19 | 03:00 PM - 05:30 PM | LC.-1.021 Übungsraum |
Monday | 12/16/19 | 03:00 PM - 05:30 PM | TC.-1.61 |
Friday | 12/20/19 | 02:00 PM - 04:30 PM | TC.-1.61 |
Wednesday | 01/08/20 | 03:00 PM - 06:30 PM | TC.-1.61 |
Monday | 01/13/20 | 03:00 PM - 05:30 PM | D3.3.274 |
This module is designed to introduce students to some of the core issues associated with empirical accounting research, basic research design issues, collecting and handling large datasets, and analysing data and tabulating results. The module is primarily based around a single published empirical study and will involve students replicating the main analyses reported therein and developing a research design that aims to extend the original analysis. The replication element of the module provides the basis for developing the fundamental data and programming skills required to undertake large sample empirical research. In addition, students will be required to develop and implement extensions of the original research design.
Students will be able to handle large widely-used commercial databases (CRSP, Compustat, IBES). They will learn important data management and econometric skills using Stata (statistical software) and how to handle practical problems arising in repications. In particular, students will engage with fundamental issues in empirical accounting research (e.g., the distinction between announcement dates and fiscal year ends, determination of return intervals, the distinction between information content versus value relevance, matching data from different data sources, etc.).
The module will comprise a mixture of lectures, computer-based workshops and interactive student-led presentations.
Back