Syllabus

Titel
0772 Analysis and Linear Algebra
LV-Leiter/innen
Dr. Andrea Wagner
Kontakt
  • LV-Typ
    PI
  • Semesterstunden
    4
  • Unterrichtssprache
    Englisch
Anmeldung
17.09.2020 bis 20.09.2020
Anmeldung über LPIS
Hinweise zur LV
Planpunkt(e) Bachelor
Termine
Wochentag Datum Uhrzeit Raum
Montag 12.10.2020 10:00 - 12:30 Online-Einheit
Montag 19.10.2020 10:00 - 12:30 Online-Einheit
Montag 02.11.2020 10:00 - 12:30 Online-Einheit
Montag 09.11.2020 10:00 - 12:30 Online-Einheit
Montag 16.11.2020 10:00 - 12:30 Online-Einheit
Montag 23.11.2020 10:00 - 12:30 Online-Einheit
Donnerstag 26.11.2020 13:00 - 15:30 Online-Einheit
Montag 30.11.2020 10:00 - 12:30 Online-Einheit
Donnerstag 03.12.2020 13:00 - 15:30 Online-Einheit
Montag 07.12.2020 10:00 - 12:30 Online-Einheit
Donnerstag 10.12.2020 13:30 - 16:30 Online-Einheit
Montag 14.12.2020 10:00 - 12:30 Online-Einheit
Donnerstag 17.12.2020 13:00 - 15:30 Online-Einheit
Montag 11.01.2021 10:00 - 13:00 Online-Einheit
Donnerstag 14.01.2021 13:00 - 15:30 Online-Einheit
Montag 18.01.2021 10:00 - 13:30 Online-Einheit
Donnerstag 21.01.2021 13:30 - 16:30 Online-Einheit
Freitag 05.02.2021 10:30 - 12:00 Online-Einheit

Ablauf der LV bei eingeschränktem Campusbetrieb

In case of limited activity on campus most units will take place online via MS Teams. Examinations (in particular mid term and final exam but also short presentations) will take place - if possible - on campus in rotation mode.

Inhalte der LV

After attending this session and studying its contents thoroughly students should be able to define the following concepts, to comprehend the concepts and explain their meaning, to state and explain the main results and to solve problems by applying the concepts.

  • Basic calculus and algebra
  • Linear algebra
  • Multivariate calculus
  • Static optimization

Lernergebnisse (Learning Outcomes)

After completing this course the student will have the ability to:

  • Describe, explain, and work with the basic concepts and definitions of linear algebra, one- and multivariable analysis, topology, static optimization.
  • Organize and integrate ideas and information from analysis and linear algebra.
  • Solve applied problems where skills are required from analysis and linear algebra.


Regelung zur Anwesenheit

For this lecture participation is obligatory. Students are allowed to miss a maximum of 20% (no matter if excused or not excused).

Lehr-/Lerndesign

The course is taught as a lecture accompanied with weekly tutorials. The lectures are aimed at providing the theoretical framework, while the tutorials help students to comprehend the key ideas of the lectures. The tutorials are based on the week’s lecture and include relevant mathematical problems that have to be solved and discussed. Students present prepared problems (exercises as homework) and work on new ones in the class.

Leistung(en) für eine Beurteilung

  • 20% weekly tutorials, presentation of problems, homework
  • 40% midterm exam and 40% final exam

There will be no opportunity to retake the exams.

 

Literatur

1 Autor/in: [SHSS] Knut Sydsaeter, Peter Hammond, Atle Seierstad, Arne Strom
Titel: Further Mathematics for Economic Analysis

Verlag: Prentice Hall
Auflage: 2nd
Anmerkungen: The contents of the course are covered by this reference
Jahr: 2008
2 Autor/in: [JL] Josef Leydold
Titel: Mathematik Grundlagen

Verlag: WU Wien
Anmerkungen: The contents of the course are covered by this reference
Art: Skriptum
3 Autor/in: [S1] Elliot Mendelson
Titel: Beginning Calculus, Schaum´s Outline Series

Verlag: McGraw Hill
Auflage: 3rd
Anmerkungen: Exercises for the admission test
Jahr: 2008
Art: Buch
4 Autor/in: [S2] Seymor Lipschutz, Marc Lipson
Titel: Linear Algebra, Schaum´s Outline Series

Verlag: McGraw Hill
Auflage: 4th
Anmerkungen: This is an introduction to Linear Algebra
Jahr: 2009
Art: Buch
5 Autor/in: [S3] Richard Bronson
Titel: Matrix Operations, Schaum´s Outline Series

Verlag: McGraw Hill
Auflage: 2nd
Anmerkungen: Linear Algebra with focus on (more advanced) matrix operations
Jahr: 2011
Art: Buch
6 Autor/in: [S4] Robert Wrede, Murray R. Spiegel
Titel: Advanced Calculus, Schaum´s Outline Series

Verlag: McGraw Hill
Auflage: 3rd
Anmerkungen: Univariate and multivariate analysis
Jahr: 2010
Art: Buch

Empfohlene inhaltliche Vorkenntnisse

  • Necessary: Successful admission to the Spezialisierung Wirtschaftsmathematik.
  • Advantageous: Ability to work with mathematical concepts such as: Basic set theory, convergence of sequences and functions, linear mappings and matrices, integration, derivative.


Erreichbarkeit des/der Vortragenden

andrea.wagner@wu.ac.at

 

Sonstiges

Further reading:

The books from "Schaum´s Outline Series"  contain short but self-contained reviews of the mathematical concepts and a large collection of problems with solutions. Hence they are an ideal source for additional exercises.

Zuletzt bearbeitet: 09.10.2020



Zurück