Syllabus
Registration via LPIS
Day | Date | Time | Room |
---|---|---|---|
Tuesday | 10/13/20 | 08:15 AM - 12:00 PM | Online-Einheit |
Tuesday | 10/20/20 | 08:15 AM - 12:00 PM | Online-Einheit |
Tuesday | 10/27/20 | 08:15 AM - 12:00 PM | Online-Einheit |
Tuesday | 11/03/20 | 08:15 AM - 12:00 PM | Online-Einheit |
Tuesday | 11/10/20 | 08:15 AM - 12:00 PM | Online-Einheit |
Tuesday | 11/17/20 | 08:15 AM - 12:00 PM | Online-Einheit |
- Der Kurs findet im Distanzmodus zu den angegebenen Kursterminen statt. Wir wechseln auf eine Online-Kursumgebung (MS Teams etc.).
- Die Teilnahmevoraussetzungen, die Lehrmethode, die Aufgaben und die Bewertung bleiben wie im Lehrplan beschrieben. Ein Wechsel des Lehrmodus (Online-Lernen) hat keine Auswirkungen auf den Lehrplan.
The course gives an introduction into applications of data science in the field of marketing, supply chain management and business process management. In this semester, we will focus on the field between data and process science, namely process mining.
The course will begin with the main aspects of Business Process Management, focussing in particular on their automation and monitoring. Thereupon, the main concepts of process mining will be illustrated, especially discovery, conformance checking, and performance checking.
During the entire course, theoretical, formal, and practical sessions will be alternated to have a full overview of the matter.
After completing this course students will have knowledge about different areas of application for data science. Students will have a basic understanding of area-specific challenges and algorithms. Besides an understanding of the problem structure, students will learn to apply mathematical and statistical tools to support decision making. Apart from that, completing this course will contribute to the students’ ability to efficiently work and communicate in a team, work on solutions for complex practical problems by using modern statistical software.
The rules on the attendance of a Continuous Assessment Course (PI) apply. See the dedicated page on the WU portal for further information.
The final grade will be computed on the basis of:
- Participation (10%)
- Exam (45%)
- Project work & project presentation (45%)
Successful conclusion of the course 1 of SBWL Data Science.
Please be aware that, for all courses in this SBWL, registration is only possibly for students who successfully have completed the entry course (Einstieg in die SBWL: Data Science).
Note that for courses within the SBWL "Data Science" we can only accept students enrolled in one of WU's bachelor programmes who qualify for starting an SBWL; particularly, we cannot accept students from other courses and programmes enrolled at WU as 'Mitbeleger' only.Back