Syllabus

Title
1678 Applications of Data Science
Instructors
Dr. Kate Cerqueira Revoredo
Contact details
Type
PI
Weekly hours
2
Language of instruction
Englisch
Registration
09/02/20 to 09/14/20
Registration via LPIS
Notes to the course
Dates
Day Date Time Room
Tuesday 10/13/20 08:15 AM - 12:00 PM Online-Einheit
Tuesday 10/20/20 08:15 AM - 12:00 PM Online-Einheit
Tuesday 10/27/20 08:15 AM - 12:00 PM Online-Einheit
Tuesday 11/03/20 08:15 AM - 12:00 PM Online-Einheit
Tuesday 11/10/20 08:15 AM - 12:00 PM Online-Einheit
Tuesday 11/17/20 08:15 AM - 12:00 PM Online-Einheit
Procedure for the course when limited activity on campus
  • Der Kurs findet im Distanzmodus zu den angegebenen Kursterminen statt. Wir wechseln auf eine Online-Kursumgebung (MS Teams etc.).
  • Die Teilnahmevoraussetzungen, die Lehrmethode, die Aufgaben und die Bewertung bleiben wie im Lehrplan beschrieben. Ein Wechsel des Lehrmodus (Online-Lernen) hat keine Auswirkungen auf den Lehrplan.
Contents

The course gives an introduction into applications of data science in the field of marketing, supply chain management and business process management. In this semester, we will focus on the field between data and process science, namely process mining.

The course will begin with the main aspects of Business Process Management, focussing in particular on their automation and monitoring. Thereupon, the main concepts of process mining will be illustrated, especially discovery, conformance checking, and performance checking.

During the entire course, theoretical, formal, and practical sessions will be alternated to have a full overview of the matter.

Learning outcomes

After completing this course students will have knowledge about different areas of application for data science. Students will have a basic understanding of area-specific challenges and algorithms. Besides an understanding of the problem structure, students will learn to apply mathematical and statistical tools to support decision making. Apart from that, completing this course will contribute to the students’ ability to efficiently work and communicate in a team, work on solutions for complex practical problems by using modern statistical software.

Attendance requirements

The rules on the attendance of a Continuous Assessment Course (PI) apply. See the dedicated page on the WU portal for further information.

Teaching/learning method(s)
The course will combine alternative ways to deliver the different topics to the students. On the one hand, a classical lecture style approach where the instructor presents the software and the content will be used; on the other hand, students will have to solve hands-on problems in class and as homework.
Assessment

The final grade will be computed on the basis of:

  • Participation (10%)
  • Exam (45%)
  • Project work & project presentation (45%)
Prerequisites for participation and waiting lists

Successful conclusion of the course 1 of SBWL Data Science.

Please be aware that, for all courses in this SBWL, registration is only possibly for students who successfully have completed the entry course (Einstieg in die SBWL: Data Science).

Note that for courses within the SBWL "Data Science" we can only accept students enrolled in one of WU's bachelor programmes who qualify for starting an SBWL; particularly, we cannot accept students from other courses and programmes enrolled at WU as 'Mitbeleger' only.
Last edited: 2020-10-10



Back