Syllabus

Title
6240 Methods I - Quantitative Research Methods (Business Administration)
Instructors
PD Dr. Thomas Rusch, Bakk.
Contact details
Type
PI
Weekly hours
2
Language of instruction
Englisch
Registration
02/19/24 to 03/02/24
Registration via LPIS
Notes to the course
Dates
Day Date Time Room
Monday 03/04/24 04:00 PM - 06:00 PM TC.4.17
Monday 03/11/24 04:00 PM - 06:00 PM TC.4.04
Monday 03/18/24 04:00 PM - 06:00 PM TC.4.28
Monday 04/08/24 04:00 PM - 06:00 PM TC.3.08
Monday 04/15/24 04:00 PM - 06:00 PM TC.3.08
Monday 04/22/24 04:00 PM - 06:00 PM TC.3.08
Monday 04/29/24 04:00 PM - 06:00 PM TC.4.17
Monday 05/06/24 04:00 PM - 06:00 PM TC.4.17
Monday 05/13/24 04:00 PM - 06:00 PM TC.4.04
Tuesday 05/21/24 04:00 PM - 06:00 PM TC.3.08
Monday 05/27/24 04:00 PM - 06:00 PM TC.3.12
Monday 06/03/24 04:00 PM - 06:00 PM TC.4.14
Monday 06/10/24 04:00 PM - 06:00 PM TC.4.14
Monday 06/17/24 04:00 PM - 06:00 PM TC.4.14
Monday 06/24/24 04:00 PM - 06:00 PM TC.4.17
Contents

This class is envisioned as a class on Intermediate Statistical Data Analysis for Social Sciences. In it we will present concepts and methods that are widespread and important for a successful career as an academic. The class is geared towards non-statisticians and puts an emphasis on “doing” and computation/simulation (as opposed to theory). It can in principle be done with little statistics knowledge, but it helps tremendously if the students had some exposure to statistical thinking and methods in their undergrad studies (e.g., regression analysis).

Throughout the course we will make use of the statistical programming language R. It is highly recommended to be familiar with R to a certain degree. If not, then students are expected to catch up within the first few units.

Here is the course plan (numbers refer to topic units, not necessarily actual units):

[1] We start with an introduction to the R environment and attempts on coding with R.

[2] The next topic is Monte Carlo simulations and resampling, which covers exploration of probability distributions, how to simulate data from these distributions and why that is useful in data analysis.

[3] Next we talk about statistical decision theory and inference, including the concepts of p-values and confidence intervals.

[4] This topic covers resampling/simulation-based approaches to statistical inference.

[5] Next we talk about measuring association between two variables, including the concept of correlation.

[6] In this topic we lay the ground for the principal method of statistics, regression analysis.

[7] In this topic we discuss two-sample t-test and ANOVA with and without repeated measurement.

[8] In these units we cover the general linear model as the unifying framework under which we can subsume everything from Pearson correlation to linear regression and ANOVA.

[9] In this unit we will cover effects sizes, power and the role that the sample size plays for planning.

[10] In this unit we extend the general linear model to the class of mixed effects (aka hierarchical aka multilevel) models.

[11] Next we extend regression analyses to models that follow other distributions. These models are called generalized linear models.

[12] Our last topic unit covers other regression topics including regression with data transformations, polynomial regression and robust regression.

[13] This is the unit where we wrap everything up and connect the dots of what we learned in a big picture view.

Learning outcomes

After the course participants will be familiar with a broad array of with the fundamental statistical procedures prevalent in business research and social sciences. They will be able to conduct statistical data analyses with these methods and know how to implement analyses in R.

At the end of the course participants will have a broad toolbox of statistical methods to choose from for typical research projects, or to build upon for more complicated data analyses. They will be able to comprehend the statistical analyses in quantitative studies and their results and critically evaluate them.

Attendance requirements

≥ 80% Attendance Requirement

Attendance of the introductory class is mandatory. Absence without valid excuse may lead to exclusion from the course. Thus, contact the course leader as early as possible, if you know you cannot make the first class.

Teaching/learning method(s)

We use a mix of a traditional lecture format and student-centered, flipped classroom elements via blending frontal lecture and input by the lecturer with interactive coding sessions and practical sessions. Practical examples will be conducted and presented in class by the students. Homework readings will enable participants to prepare for all topics beforehand. We also make use of homework assignments of practical examples and coding exercises. The student-centered elements put an emphasis on active learning by the students with activities that involve higher-order thinking, especially creating statistical analyses with R, analyzing research data, interpretation and evaluation of results.

Assessment

The grading is based on the following components (100 points overall):

The students have to hand-in a midterm (50 points) and a final project report (50 points) both in the form of a data analysis report.

In both of these projects, students work in teams of two and must apply the statistical methods we learned in class with the R functions we learned, indicating their mastery of the topics. Ideally, students will use a data set that is of relevance to their own PhD project.

Prerequisites for participation and waiting lists

Attendance of the introductory unit is mandatory. Prior knowledge of R is not mandatory, but highly recommended. General skills for using R must be acquired at least within the first three units.

Readings

Please log in with your WU account to use all functionalities of read!t. For off-campus access to our licensed electronic resources, remember to activate your VPN connection connection. In case you encounter any technical problems or have questions regarding read!t, please feel free to contact the library at readinglists@wu.ac.at.

Recommended previous knowledge and skills

Prior exposure to an introductory statistics class is highly recommended. Prior knowledge of R is not mandatory, but highly recommended. General skills for using R must be acquired at least within the first three units.

Availability of lecturer(s)

Via e-mail to thomas.rusch@wu.ac.at

Last edited: 2024-02-12



Back